Maths formulas # 03 :)



RATIO AND PROPORTION
  • Ratio:
The ratio of two quantities a and b in the same units, is the fraction   and we write it as a : b.In the ratio a : b, we call a as the first term or antecedent and b, the second term orconsequent.
Eg. The ratio 5 : 9 represents
5
with antecedent = 5, consequent = 9.
9
Rule: The multiplication or division of each term of a ratio by the same non-zero number does not affect the ratio.
Eg. 4 : 5 = 8 : 10 = 12 : 15. Also, 4 : 6 = 2 : 3.
  • Proportion:
The equality of two ratios is called proportion.If a : b = c : d, we write a : b :: c : d and we say that a, b, c, d are in proportion.Here a and d are called extremes, while b and c are called mean terms.Product of means = Product of extremes.Thus, a : b :: c : d   (b x c) = (a x d).
  • Fourth Proportional:
If a : b = c : d, then d is called the fourth proportional to a, b, c.Third Proportional:a : b = c : d, then c is called the third proportion to a and b.
Mean Proportional:Mean proportional between a and b is ab.
  • Comparison of Ratios:
We say that (a : b) > (c : d)      
a
> 
c
.
b
d
  1. Compounded Ratio:
The compounded ratio of the ratios: (a : b), (c : d), (e : f) is (ace : bdf).
  1. Duplicate Ratios:
Duplicate ratio of (a : b) is (a2 : b2).Sub-duplicate ratio of (a : b) is (a : b).Triplicate ratio of (a : b) is (a3 : b3).Sub-triplicate ratio of (a : b) is (a1/3 : b1/3).
If
a
=
c
, then
a + b
=
c + d
.     [componendo and dividendo]
b
d
a - b
c - d
  1. Variations:
We say that x is directly proportional to y, if x = ky for some constant k and we write,x   y.We say that x is inversely proportional to y, if xy = k for some constant k and
we write, x 
1
.
y
 

PERCENTAGE
  1. Concept of Percentage:
By a certain percent, we mean that many hundredths.Thus, x percent means x hundredths, written as x%.
To express x% as a fraction: We have, x% =
x
.
100
    Thus, 20% =
20
=
1
.
100
5
To express
a
as a percent: We have,
a
=
a
x 100
%.
b
b
b
    Thus,
1
=
1
x 100
%
= 25%.
4
4
 
  1. Percentage Increase/Decrease:
If the price of a commodity increases by R%, then the reduction in consumption so as not to increase the expenditure is:
R
x 100
%
(100 + R)

If the price of a commodity decreases by R%, then the increase in consumption so as not to decrease the expenditure is:
R
x 100
%
(100 - R)

  1. Results on Population:
Let the population of a town be P now and suppose it increases at the rate of R% per annum, then:
1. Population after n years = P
1 +
R
n
100
2. Population n years ago =
P
1 +
R
n
100
  1. Results on Depreciation:
Let the present value of a machine be P. Suppose it depreciates at the rate of R% per annum. Then:
1. Value of the machine after n years = P
1 -
R
n
100
2. Value of the machine n years ago =
P
1 -
R
n
100
3. If A is R% more than B, then B is less than A by
R
x 100
%.
(100 + R)
4. If A is R% less than B, then B is more than A by
R
x 100
%.
(100 - R)
  









No comments:



Recent Posts :

Powered by Blogger.